Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
A wealth of information on multiloop string amplitudes is encoded in fermionic two-point functions known as Szegö kernels. Here we show that cyclic products of any number of Szegö kernels on a Riemann surface of arbitrary genus may be decomposed into linear combinations of modular tensors on moduli space that carry all the dependence on the spin structure . The -independent coefficients in these combinations carry all the dependence on the marked points and are composed of the integration kernels of higher-genus polylogarithms. We determine the antiholomorphic moduli derivatives of the -dependent modular tensors. Published by the American Physical Society2024more » « less
-
A<sc>bstract</sc> The Seiberg-Witten solution to four-dimensional$$ \mathcal{N} $$ = 2 super-Yang-Mills theory with gauge group SU(N) and without hypermultiplets is used to investigate the neighborhood of the maximal Argyres-Douglas points of type$$ \left({\mathfrak{a}}_1,{\mathfrak{a}}_{N-1}\right) $$ . A convergent series expansion for the Seiberg-Witten periods near the Argyres-Douglas points is obtained by analytic continuation of the series expansion around theℤ2Nsymmetric point derived in arXiv:2208.11502. Along with direct integration of the Picard-Fuchs equations for the periods, the expansion is used to determine the location of the walls of marginal stability for SU(3). The intrinsic periods and Kähler potential of the$$ \left({\mathfrak{a}}_1,{\mathfrak{a}}_{N-1}\right) $$ superconformal fixed point are computed by letting the strong coupling scale tend to infinity. We conjecture that the resulting intrinsic Kähler potential is positive definite and convex, with a unique minimum at the Argyres-Douglas point, provided only intrinsic Coulomb branch operators with unitary scaling dimensions ∆>1 acquire a vacuum expectation value, and provide both analytical and numerical evidence in support of this conjecture. In all the low rank examples considered here, it is found that turning on moduli dual to ∆ ≤ 1 operators spoils the positivity and convexity of the intrinsic Kähler potential.more » « less
-
A<sc>bstract</sc> The summation over spin structures, which is required to implement the GSO projection in the RNS formulation of superstring theories, often presents a significant impediment to the explicit evaluation of superstring amplitudes. In this paper we discover that, for Riemann surfaces of genus two and even spin structures, a collection of novel identities leads to a dramatic simplification of the spin structure sum. Explicit formulas for an arbitrary number of vertex points are obtained in two steps. First, we show that the spin structure dependence of a cyclic product of Szegö kernels (i.e. Dirac propagators for worldsheet fermions) may be reduced to the spin structure dependence of the four-point function. Of particular importance are certaintrilinear relationsthat we shall define and prove. In a second step, the known expressions for the genus-two even spin structure measure are used to perform the remaining spin structure sums. The dependence of the spin summand on the vertex points is reduced to simple building blocks that can already be identified from the two-point function. The hyper-elliptic formulation of genus-two Riemann surfaces is used to derive these results, and its SL(2,ℂ) covariance is employed to organize the calculations and the structure of the final formulas. The translation of these results into the language of Riemannϑ-functions, and applications to the evaluation of higher-point string amplitudes, are relegated to subsequent companion papers.more » « less
-
A bstract We consider the Seiberg-Witten solution of pure $$ \mathcal{N} $$ N = 2 gauge theory in four dimensions, with gauge group SU( N ). A simple exact series expansion for the dependence of the 2( N − 1) Seiberg-Witten periods a I ( u ) , a DI ( u ) on the N − 1 Coulomb-branch moduli u n is obtained around the ℤ 2 N -symmetric point of the Coulomb branch, where all u n vanish. This generalizes earlier results for N = 2 in terms of hypergeometric functions, and for N = 3 in terms of Appell functions. Using these and other analytical results, combined with numerical computations, we explore the global structure of the Kähler potential K = $$ \frac{1}{2}{\sum}_I $$ 1 2 ∑ I Im( $$ \overline{a} $$ a ¯ I a DI ), which is single valued on the Coulomb branch. Evidence is presented that K is a convex function, with a unique minimum at the ℤ 2 N -symmetric point. Finally, we explore candidate walls of marginal stability in the vicinity of this point, and their relation to the surface of vanishing Kähler potential.more » « less
-
A bstract Modular graph functions (MGFs) are SL(2 , ℤ)-invariant functions on the Poincaré upper half-plane associated with Feynman graphs of a conformal scalar field on a torus. The low-energy expansion of genus-one superstring amplitudes involves suitably regularized integrals of MGFs over the fundamental domain for SL(2 , ℤ). In earlier work, these integrals were evaluated for all MGFs up to two loops and for higher loops up to weight six. These results led to the conjectured uniform transcendentality of the genus-one four-graviton amplitude in Type II superstring theory. In this paper, we explicitly evaluate the integrals of several infinite families of three-loop MGFs and investigate their transcendental structure. Up to weight seven, the structure of the integral of each individual MGF is consistent with the uniform transcendentality of string amplitudes. Starting at weight eight, the transcendental weights obtained for the integrals of individual MGFs are no longer consistent with the uniform transcendentality of string amplitudes. However, in all the cases we examine, the violations of uniform transcendentality take on a special form given by the integrals of triple products of non-holomorphic Eisenstein series. If Type II superstring amplitudes do exhibit uniform transcendentality, then the special combinations of MGFs which enter the amplitudes must be such that these integrals of triple products of Eisenstein series precisely cancel one another. Whether this indeed is the case poses a novel challenge to the conjectured uniform transcendentality of genus-one string amplitudes.more » « less
-
A bstract The contribution from even spin structures to the genus-two amplitude for five massless external NS states in Type II and Heterotic superstrings is evaluated from first principles in the RNS formulation. Using chiral splitting with the help of loop momenta this problem reduces to the evaluation of the corresponding chiral amplitude, which is carried out using the same techniques that were used for the genus-two amplitude with four external NS states. The results agree with the parity-even NS components of a construction using chiral splitting and pure spinors given in earlier companion papers [29] and [33].more » « less
-
A bstract Motivated by applications to soft supersymmetry breaking, we revisit the expansion of the Seiberg-Witten solution around the multi-monopole point on the Coulomb branch of pure SU( N ) $$ \mathcal{N} $$ N = 2 gauge theory in four dimensions. At this point N − 1 mutually local magnetic monopoles become massless simultaneously, and in a suitable duality frame the gauge couplings logarithmically run to zero. We explicitly calculate the leading threshold corrections to this logarithmic running from the Seiberg-Witten solution by adapting a method previously introduced by D’Hoker and Phong. We compare our computation to existing results in the literature; this includes results specific to SU(2) and SU(3) gauge theories, the large- N results of Douglas and Shenker, as well as results obtained by appealing to integrable systems or topological strings. We find broad agreement, while also clarifying some lingering inconsistencies. Finally, we explicitly extend the results of Douglas and Shenker to finite N , finding exact agreement with our first calculation.more » « less
-
null (Ed.)A bstract Elliptic modular graph functions and forms (eMGFs) are defined for arbitrary graphs as natural generalizations of modular graph functions and forms obtained by including the character of an Abelian group in their Kronecker-Eisenstein series. The simplest examples of eMGFs are given by the Green function for a massless scalar field on the torus and the Zagier single-valued elliptic polylogarithms. More complicated eMGFs are produced by the non-separating degeneration of a higher genus surface to a genus one surface with punctures. eMGFs may equivalently be represented by multiple integrals over the torus of combinations of coefficients of the Kronecker-Eisenstein series, and may be assembled into generating series. These relations are exploited to derive holomorphic subgraph reduction formulas, as well as algebraic and differential identities between eMGFs and their generating series.more » « less
-
null (Ed.)A bstract An alternative method is presented for extracting the von Neumann entropy − Tr( ρ ln ρ ) from Tr( ρ n ) for integer n in a quantum system with density matrix ρ . Instead of relying on direct analytic continuation in n , the method uses a generating function − Tr{ ρ ln[(1 − zρ )/(1 − z )]} of an auxiliary complex variable z . The generating function has a Taylor series that is absolutely convergent within |z| < 1, and may be analytically continued in z to z = −∞ where it gives the von Neumann entropy. As an example, we use the method to calculate analytically the CFT entanglement entropy of two intervals in the small cross ratio limit, reproducing a result that Calabrese et al. obtained by direct analytic continuation in n . Further examples are provided by numerical calculations of the entanglement entropy of two intervals for general cross ratios, and of one interval at finite temperature and finite interval length.more » « less
An official website of the United States government
